Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Chem Biol Interact ; 393: 110939, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38490643

RESUMEN

Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.


Asunto(s)
Cisplatino , Ototoxicidad , Ratones , Animales , Masculino , Cisplatino/farmacología , Cisplatino/metabolismo , Pericitos/metabolismo , Quercetina/farmacología , Quercetina/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales/metabolismo , Ototoxicidad/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo , Apoptosis
2.
Biochem Biophys Res Commun ; 690: 149257, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016245

RESUMEN

BACKGROUND: Noise is an important environmental stressor in the industrialized world and has received increasing attention in recent years. Although epidemiological research has extensively demonstrated the relationship between noise and cognitive impairment, the specific molecular mechanisms and targets remain to be fully explored and understood. METHODS: To address this issue, 5-month-old C57BL/6 mice were divided into two groups, with one group exposed to white noise at 98 dB. The effects of noise on cognition in mice were investigated through molecular biology and behavioral experiments. Subsequently, transcriptomic sequencing of the hippocampus in both groups of mice was performed and enrichment analysis of differentially expressed genes (DEGs) was conducted using KEGG and GO databases. Furthermore, LASSO analysis was used to further narrow down the relevant DEGs, followed by enrichment analysis of these genes using KEGG and GO databases. The DEGs were further validated by rt-qPCR. RESULTS: Following noise exposure, the hippocampus levels of inflammation-related factors increased, the phosphorylation of Tau protein increased, the postsynaptic density protein decreased, the number of Nissl bodies decreased, and cell shrinkage in the hippocampus increased. Moreover, the behavioral experiments manifest characteristics indicative of a decline in cognitive.A total of 472 DEGs were identified through transcriptomic analysis, and seven relevant genes were screened by the LASSO algorithm, which were further validated by PCR to confirm their consistency with the omics results. CONCLUSION: In conclusion, noise exposure affects cognitive function in mice through multiple pathways, and the omics results provide new evidence for the cognitive impairment induced by noise exposure.


Asunto(s)
Disfunción Cognitiva , Perfilación de la Expresión Génica , Ratones , Animales , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Cognición
3.
Biochem Biophys Res Commun ; 687: 149172, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37931421

RESUMEN

OBJECTIVE: The study aimed to observe the effects of noise exposure on the pericytes of the cochlear stria vascularis (SV) in mice and to investigate its molecular mechanism. METHOD: Male C57BL/6J mice aged 6-8 weeks were used as the subjects. Auditory Brainstem Response (ABR) was used to assess hearing loss. Hematoxylin and Eosin (HE) staining was conducted to observe morphological alterations in the SV. Immunofluorescence combined with transmission electron microscopy (TEM) was used to scrutinize changes in pericytes following acoustic injury. Western blotting (WB) was used to assess the expression variations of the migration-related protein Osteopontin (OPN). Evans Blue assay was performed to evaluate the permeability of the blood labyrinth barrier (BLB). 4-Hydroxynonenal (4-HNE) staining, in conjunction with measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), and Catalase (CAT) content, was used to ascertain whether oxidative stress injury occurred in the SV. WB, combined with immunofluorescence, was used to examine alterations in the expression of proliferator-activated receptor-gamma coactivator 1α (PGC-1α) in the SV and pericytes. RESULTS: Noise exposure resulted in permanent hearing loss in C57BL/6J mice, accompanied by SV swelling, migration of pericytes from their vascular attachments, BLB leakage, elevated oxidative stress levels in the SV, and reduced expression of PGC-1α on both the SV and migrating pericytes. CONCLUSION: Noise exposure may potentially increase oxidative stress levels in the SV, downregulate the expression levels of PGC-1α, promote pericytes migration, and subsequently lead to an elevation in BLB permeability.


Asunto(s)
Sordera , Oído Interno , Pérdida Auditiva Provocada por Ruido , Animales , Humanos , Masculino , Ratones , Cóclea/metabolismo , Sordera/metabolismo , Oído Interno/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Ratones Endogámicos C57BL , Pericitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
4.
Biochem Biophys Res Commun ; 681: 283-290, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801777

RESUMEN

In recent years, it has become an acknowledged fact that noise exposure can lead to cognitive impairments, and researchers have shown increasing interest in this area. However, the detrimental impact of noise exposure on Alzheimer's disease (AD) animal models might be considerably greater than on ordinary model mice, yet the mechanisms by which noise exposure affects the hippocampus in these models have been scarcely investigated. This study we used 4D Label-free proteomics to identify distinctive differentially expressed proteins in the hippocampus of AD model mice following noise exposure. Among these proteins, the presence of Cathepsin S(CTSS) cannot be disregarded. Utilizing experimental techniques such as Western blot, immunofluorescence, and rt-qPCR, we confirmed the expression of CTSS in the hippocampus of APP/PS1 mice after noise exposure. Additionally, we examined downstream molecules including P53,BCL-2, BAX, and CASPASE3 using KEGG pathway analysis. The results indicated an elevation in CTSS expression, a reduction in the anti-apoptotic gene BCL-2, and an increase in the expression of BAX and cleaved CASPASE3. Based on these findings, we hypothesize that noise exposure potentially heightens apoptosis within the hippocampus through upregulating CTSS expression, subsequently posing a threat to AD model animals.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Regulación hacia Arriba , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Hipocampo/metabolismo , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/metabolismo
5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(4): 348-355, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-36414560

RESUMEN

Objective: To investigate the role of Cav1.2 and its possible mechanism in the apoptosis of cochlear spiral ganglion neurons(SGNs) induced by cisplatin (CDDP) in C57BL/6J mice. Methods: Animal experiment: 8-week-old male C57BL/6J mice were randomly divided into the following two groups (10 mice/group) : normal saline group (Control group) and Cisplatin group (Cisplatin group). The Control group received daily intraperitoneal injections of normal saline, Cisplatin group was injected with cisplatin intraperitoneally at a dose of 3 mg/kg at the first 4 days of each cycle, and normal saline was injected daily at the last 10 days,repeat for 3 cycles. After administration, auditory threshold was detected by auditory brainstem response (ABR). Blood samples were collected from inner canthus of mice, and cochlea was cut off from neck. SOD and MDA kits were used to detect SOD activity and MDA content in serum and cochlea tissues. The expressions of apoptosis proteins in cochlear tissues were detected by Western blot. Morphological changes of spiral ganglion in mouse cochlea were observed by hematoxylin-eosin (HE) staining. TUNEL staining was used to observe the apoptosis of SGNs in cochlea of mice. The distribution and expression of Cav1.2 in SGNs of cochlea were observed by immunofluorescence. Cell experiment: Primary cultured SGNs were randomly divided into: control group (Control), solvent group (DMSO), Cav1.2 blocker group (N), cisplatin group, cisplatin and Cav1.2 blocker co-incubation group (Cisplatin+N). 5 µmol/L cisplatin was selected to treat SGNs based on the results of CCK8. Western blot was used to detect the protein expressions of Cav1.2.and apoptotic proteins. Hoechst33342 staining was used to observe the apoptosis of each group. Flow cytometry was used to detect the apoptosis rate of each group. Mitochondrial superoxide indicator (MitoSOXTM-Red) was used to detect the ROS release of mitochondria. Results: Animal experiments: Compared to the Control group, the hearing threshold was increased in Cisplatin group (P<0.01), the content of MDA in serum and cochlea tissues, apoptosis protein Cleaved caspase-3, Bax protein level, TUNEL positive rate, Cav1.2 protein expression level were increased significantly (P<0.05, P<0.01); the activity of SOD in serum and cochlear tissue, anti-apoptotic protein bcl-2 protein level and SGCs density in cochlear tissue were decreased significantly (P<0.05, P<0.01). Cell tests: Compared with the Control group, the expression of Cav1.2, apoptosis rate, Cleaved caspase-3, Bax protein level, intracellular calcium ion concentration, and ROS release were increased significantly only in Cisplatin group (P<0.05, P<0.01). The levels of bcl-2 protein and mitochondrial membrane potential were decreased significantly (P<0.01). Cav1.2 blockers could partially reverse the above changes (P<0.05). Conclusion: Cisplatin may increase intracellular Ca2+ concentration through up-regulation of Cav1.2, and then damage mitochondria, causing oxidative stress injury of SGNs and inducing neuronal apoptosis.


Asunto(s)
Cisplatino , Ganglio Espiral de la Cóclea , Masculino , Ratones , Animales , Ganglio Espiral de la Cóclea/metabolismo , Cisplatino/farmacología , Cisplatino/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Ratones Endogámicos C57BL , Solución Salina , Especies Reactivas de Oxígeno/metabolismo , Cóclea/metabolismo , Apoptosis , Neuronas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Superóxido Dismutasa/metabolismo
6.
Int J Mol Med ; 50(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35856410

RESUMEN

The investigation of effective therapeutic drugs for pulmonary hypertension (PH) is critical. KIR2.1 plays crucial roles in regulating cell proliferation and migration, and vascular remodeling. However, researchers have not yet clearly determined whether KIR2.1 participates in the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and its role in pulmonary vascular remodeling (PVR) also remains elusive. The present study aimed to examine whether KIR2.1 alters PASMC proliferation and migration, and participates in PVR, as well as to explore its mechanisms of action. For the in vivo experiment, a PH model was established by intraperitoneally injecting Sprague­Dawley rats monocrotaline (MCT). Hematoxylin and eosin staining revealed evidence of PVR in the rats with PH. Immunofluorescence staining and western blot analysis revealed increased levels of the KIR2.1, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) proteins in pulmonary blood vessels and lung tissues following exposure to MCT, and the TGF­ß1/SMAD2/3 signaling pathway was activated. For the in vitro experiments, the KIR2.1 inhibitor, ML133, or the TGF­ß1/SMAD2/3 signaling pathway blocker, SB431542, were used to pre­treat human PASMCs (HPASMCs) for 24 h, and the cells were then treated with platelet­derived growth factor (PDGF)­BB for 24 h. Scratch and Transwell assays revealed that PDGF­BB promoted cell proliferation and migration. Immunofluorescence staining and western blot analysis demonstrated that PDGF­BB upregulated OPN and PCNA expression, and activated the TGF­ß1/SMAD2/3 signaling pathway. ML133 reversed the proliferation and migration induced by PDGF­BB, inhibited the expression of OPN and PCNA, inhibited the TGF­ß1/SMAD2/3 signaling pathway, and reduced the proliferation and migration of HPASMCs. SB431542 pre­treatment also reduced cell proliferation and migration; however, it did not affect KIR2.1 expression. On the whole, the results of the present study demonstrate that KIR2.1 regulates the TGF­ß1/SMAD2/3 signaling pathway and the expression of OPN and PCNA proteins, thereby regulating the proliferation and migration of PASMCs and participating in PVR.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Animales , Becaplermina/metabolismo , Becaplermina/farmacología , Proliferación Celular , Humanos , Hipertensión Pulmonar/metabolismo , Monocrotalina , Miocitos del Músculo Liso/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Vascular
7.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 543-548, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37088767

RESUMEN

OBJECTIVE: To investigate whether probenecid (PROB) could improve the proliferation and migration ability of rats' pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB). METHODS: Primary pulmonary artery smooth muscle cells (PASMCs) of SD rats were cultured in vitro, and were randomly divided into control group (CON group), PDGF-BB group (10 ng/ml PDGF-BB treatment for 24 h) and PDGF-BB+PROB group (10 ng/ml PDGF-BB and 200 µmol/L PROB treatment for 24 h, PROB is a specific blocker of pannexin-1). CCK-8 method was used to select the suitable intervention concentrations of PROB and PDGF-BB, and to detect the proliferation of PASMCs in each group. The migration ability of PASMCs was detected by TranswellTM assay and cell scratch test. Immunofluorescence cytochemistry and Western blot were used to detect the protein expressions and distribution of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) in PASMCs. RESULTS: Compared with CON group, the migration and proliferation ability of PASMCs in PDGF-BB group were enhanced (P<0.05). After treated with PROB, the migration and proliferation ability of PASMCs in PDGF-BB+PROB group were decreased significantly (P<0.05). Compared with CON group, the expression and protein levels of OPN and PCNA in PDGF-BB group were increased significantly (P<0.05), while the expression and protein levels of OPN and PCNA in PDGF-BB+PROB were decreased significantly (P<0.05). CONCLUSION: Probenecid inhibits the migration and proliferation of PDGF-BB-induced PASMCs by blocking Pannexin-1.


Asunto(s)
Probenecid , Arteria Pulmonar , Ratas , Animales , Becaplermina/metabolismo , Becaplermina/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Probenecid/farmacología , Probenecid/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proliferación Celular , Ratas Sprague-Dawley , Miocitos del Músculo Liso , Células Cultivadas
8.
Eur J Pharmacol ; 913: 174642, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822791

RESUMEN

It is widely accepted that the stria vascularis (SV) in cochlea plays a critical role in the generation of endocochlear potential (EP) and the secretion of the endolymph. 17ß-estradiol (E2) is the most potent and abundant endogenous estrogen during the premenopausal period, thus, considered as the reference estrogen. This study aimd to investigate the protective effect of E2 by promoting the expression of vascular endothelial growth factor (VEGF) and thus promoting the vascular regeneration of the SV in elderly mice. After being treated with E2 either in vivo or in vitro, the hearing threshold changes of C57BL/6J elder mice continuously reduced, endothelial cell morphology improved, the number of endothelial cells (ECs) tubular nodes increased significantly, the ability of tubular formation enhanced significantly and the expression of VEGF increased. In vitro, cell model in conjunction with in vivo ovariectomized model was established to demonstrate for the first time that E2 promotes angiogenesis by promoting the secretion of VEGF through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT). In conclusion, E2 demonstrated potent angiogenesis properties with significant protection against Age-Related Hearing Loss (ARHL), which provides a new idea for the improvement of ARHL.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Estradiol/farmacología , Pérdida Auditiva/prevención & control , Neovascularización Fisiológica/efectos de los fármacos , Estría Vascular/efectos de los fármacos , Envejecimiento/fisiología , Inductores de la Angiogénesis/uso terapéutico , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Estradiol/uso terapéutico , Femenino , Pérdida Auditiva/fisiopatología , Humanos , Ratones , Técnicas de Cultivo de Órganos , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estría Vascular/fisiología , Factor A de Crecimiento Endotelial Vascular/agonistas , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Pulm Pharmacol Ther ; 70: 102072, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428599

RESUMEN

BACKGROUND: Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood. MATERIAL AND METHODS: Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells). The aim was to elucidate the role of CX43 in hypertension induced by AngII. RESULTS: Chronic ramipril (angiotensin converting enzyme inhibitor) management for SHRs significantly attenuated blood pressure and blood vessel wall thickness, also reduced contraction rate in the cerebral artery. The cerebral artery contraction rates, mRNA and protein expression of Cx43, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) protein expression in the SHR + ramipril and SHR + ramipril + carbenoxolone (CBX, Cx43 specific blocker) groups were significantly lower than those in the SHR group. Cx43 protein expression and Ser368 phosphorylated Cx43 protein levels increased significantly in AngII-stimulated A7r5 cells. However, the levels of phosphorylated Cx43 decreased after pre-treatment with candesartan (AT1 receptor blocker), GF109203X (protein kinase C (PKC) blocker) and U0126 (mitogen-activated protein kinases/extracellular signal-regulated kinase1/2(MEK/ERK1/2)-specific blocker) in AngII-stimulated A7r5 cells. Cx43 was widely distributed in the cell membrane, nucleus, and cytoplasm of the SMCs. Furthermore, pre-treatment of the AngII- stimulated A7r5 cells with Gap26 (Cx43 blocker) significantly inhibited cell migration and decreased the expression levels of MEK1/2, ERK1/2, P-MEK1/2, and P-ERK1/2. CONCLUSION: Our research confirms that Cx43 plays an important role in the regulation of proliferation and migration of VSMCs via MEK/ERK and PKC signal pathway in AngII-dependent hypertension.


Asunto(s)
Angiotensina II , Conexina 43/fisiología , Hipertensión , Miocitos del Músculo Liso/citología , Angiotensina II/farmacología , Animales , Proliferación Celular , Músculo Liso Vascular , Ratas
10.
Front Cell Neurosci ; 15: 665596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113239

RESUMEN

Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague-Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4 - 6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.

11.
Life Sci ; 274: 119347, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33716065

RESUMEN

Pulmonary vascular remodelling is one of the most important factors for pulmonary hypertension (PH). Galectin-3 (Gal-3) is a ß-galactoside-binding lectin. In the latest literature, Gal-3 has been reported to be involved in pulmonary vascular remodelling, and its underlying mechanism is unclear. Our research aims to prove the effect of Gal-3 on the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMC) induced by transforming growth factor ß1 (TGF-ß1) and to study its mechanism. In vivo experiment: In Sprague-Dawley (SD) rats, monocrotaline was injected intraperitoneally to establish a PH model, and the Gal-3 inhibitor (modified citrus pectin, MCP) 28 Ds was administered in the stomach. The results indicate that Gal-3 and TGF-ß1 may be involved in the occurrence and development of PH, which may be related to the Smad2/3 signalling pathway. In vitro experiment: Human pulmonary artery smooth muscle cells were pretreated with the Gal-3 inhibitor (MCP) for 24 h, then TGF-ß1 or Gal-3 was administered to the cells for 24 h. The results show that exogenous TGF-ß1 and Gal-3 can activate the downstream Smad2/3 signalling pathway, and increase the proliferation and migration ability of HPASMC. However, the Gal-3 inhibitor (MCP) inhibited these effects. Further results display that TGF-ß1 and Gal-3 could mutually regulate the protein and mRNA expression levels. In summary, the results of this study indicate that Gal-3 regulates the Smad2/3 signalling pathway through protein interaction with TGF-ß1, in turn regulates the proliferation and migration of HPASMC, thereby regulating the occurrence and development of PH.


Asunto(s)
Movimiento Celular , Proliferación Celular , Galectina 3/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Galectina 3/genética , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética
12.
Front Pharmacol ; 12: 781237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046811

RESUMEN

Type 1 and type 2 cannabinoid receptors (CB1 and CB2, respectively) mediate cannabinoid-induced analgesia. Loss of endogenous CB1 is associated with hyperalgesia. However, the downstream targets affected by ablation of CB1 in primary sensory neurons remain unknown. In the present study, we hypothesized that conditional knockout of CB1 in primary sensory neurons (CB1cKO) alters downstream gene expression in the dorsal root ganglion (DRG) and that targeting these pathways alleviates neuropathic pain. We found that CB1cKO in primary sensory neurons induced by tamoxifen in adult Advillin-Cre:CB1-floxed mice showed persistent hyperalgesia. Transcriptome/RNA sequencing analysis of the DRG indicated that differentially expressed genes were enriched in energy regulation and complement and coagulation cascades at the early phase of CB1cKO, whereas pain regulation and nerve conduction pathways were affected at the late phase of CB1cKO. Chronic constriction injury in mice induced neuropathic pain and changed transcriptome expression in the DRG of CB1cKO mice, and differentially expressed genes were mainly associated with inflammatory and immune-related pathways. Nerve injury caused a much larger increase in CB2 expression in the DRG in CB1cKO than in wildtype mice. Interfering with downstream target genes of CB1, such as antagonizing CB2, inhibited activation of astrocytes, reduced neuroinflammation, and alleviated neuropathic pain. Our results demonstrate that CB1 in primary sensory neurons functions as an endogenous analgesic mediator. CB2 expression is regulated by CB1 and may be targeted for the treatment of neuropathic pain.

13.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(4): 358-362, 2020 Jul.
Artículo en Chino | MEDLINE | ID: mdl-33167099

RESUMEN

OBJECTIVE: To investigate the expression and electrophysiological characteristics of calcium-activated chlorine channel anoctamin-1 (ANO1) protein during the differentiation of cardiac fibroblasts (CFs) into myofibroblasts (MFs), and to elucidate the role of ANO1 in myocardial fibrosis. METHODS: The primary CFs from neonatal rats were isolated and the cells differentiated into MFs by subculture. The Ca2+-activated Cl- current (ICl(Ca)) in CFs and MFs were measured by whole-cell patch clamp, and the expressions of ANO1, α-smooth muscle actin(α-SMA)and vimentin in CFs and MFs were detected by immunofluorescence assay and Western blot, respectively. RESULTS: The current density in the early adherent CFs was stronger than that in MFs. ANO1 was expressed preferentially within and around the nuclei, and a small amount of ANO1 was expressed on the cell membrane. Moreover, ANO1 expression was weak in the early adherent CFs and displayed stronger expression in the MFs with proliferation tendency. CONCLUSION: The expression of ANO1 is closely related to the differentiation of MFs and it may be involved in modulation myocardial fibrosis.


Asunto(s)
Anoctamina-1 , Calcio , Canales de Cloruro , Fibroblastos , Animales , Anoctamina-1/metabolismo , Calcio/metabolismo , Diferenciación Celular , Fibroblastos/metabolismo , Ratas
14.
Int J Mol Med ; 46(2): 782-794, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32468069

RESUMEN

Nav1.7 is closely associated with neuropathic pain. Hydrogen sulfide (H2S) has recently been reported to be involved in numerous biological functions, and it has been shown that H2S can enhance the sodium current density, and inhibiting the endogenous production of H2S mediated by cystathionine ß­synthetase (CBS) using O­(carboxymethyl)hydroxylamine hemihydrochloride (AOAA) can significantly reduce the expression of Nav1.7 and thus the sodium current density in rat dorsal root ganglion (DRG) neurons. In the present study, it was shown that the fluorescence intensity of H2S was increased in a spared nerve injury (SNI) model and AOAA inhibited this increase. Nav1.7 is expressed in DRG neurons, and the expression of CBS and Nav1.7 were increased in DRG neurons 7, 14 and 21 days post­operation. AOAA inhibited the increase in the expression of CBS, phosphorylated (p)­MEK1/2, p­ERK1/2 and Nav1.7 induced by SNI, and U0126 (a MEK blocker) was able to inhibit the increase in p­MEK1/2, p­ERK1/2 and Nav1.7 expression. However, PF­04856264 did not inhibit the increase in CBS, p­MEK1/2, p­ERK1/2 or Nav1.7 expression induced by SNI surgery. The current density of Nav1.7 was significantly increased in the SNI model and administration of AOAA and U0126 both significantly decreased the density. In addition, AOAA, U0126 and PF­04856264 inhibited the decrease in rheobase, and the increase in action potential induced by SNI in DRG neurons. There was no significant difference in thermal withdrawal latency among each group. However, the time the animals spent with their paw lifted increased significantly following SNI, and the time the animals spent with their paw lifted decreased significantly following the administration of AOAA, U0126 and PF­04856264. In conclusion, these data show that Nav1.7 expression in DRG neurons is upregulated by CBS­derived endogenous H2S in an SNI model, contributing to the maintenance of neuropathic pain.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transducción de Señal/fisiología , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
15.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(5): 385-389, 2020 Sep.
Artículo en Chino | MEDLINE | ID: mdl-33629548

RESUMEN

Objective: Primary cultured cochlear stria vascularis endothelial cells (ECs) of guinea pig were used to investigate the expression changes of TMEM16A and its effect on apoptosis and senescence of ECs in the cochlear stria vascularis. Methods: Primary cultured ECs in the cochlear stria vascularis were used to establish aging models according to CCK-8 and SA-ß-galactosidase. Senescent cells were randomly divided into senescent group (P12), DMSO group (P12+DMSO), T16Ainh-A01 group (P12+T16Ainh-A01). Immunofluorescence and Western blot were used to detect the expression of TMEM16A in ECs. Flow cytometry was used to detect the apoptotic rate. Western blot was used to detect the protein expressions of Bax, Bcl-2 and cleaved casepase-3 in each group. Results: The positive rate of primary cultured cochlear stria vascularis ECs was above 95%, and the 12th generation cochlear stria vascularis ECs were determined as the senescence group, and the expression of TMEM16A in protein and fluorescence was increased (P<0.05). After intervention with T16Ainh-A01 for 24 h, the protein expressions of Bax and cleaved casepase-3 were down-regulated (P<0.01), the protein expression of Bcl-2 was increased (P<0.05), the apoptotic rate and the positive rate of SA-ß-gal were down-regulated (P<0.01). Conclusion: It was found that apoptosis and TMEM16A expression were increased in cochlear stria vascularis senescent ECs, TMEM16A specific blocker T16Ainh-A01 could reduce the apoptosis and senescence in ECs of the cochlear stria vascularis. These results suggest that TMEM16A may participate in apoptosis and senescence of ECs in the cochlear stria vascularis.


Asunto(s)
Células Endoteliales , Estría Vascular , Animales , Apoptosis , Cóclea , Cobayas , Pirimidinas , Tiazoles
16.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(6): 529-533, 2020 Nov.
Artículo en Chino | MEDLINE | ID: mdl-33719252

RESUMEN

Objective: To observe the effects of estrogen on cochlear spiral ganglia cell apoptosis in aged C57BL/6J mice, and to explore the possible mechanism of estrogen's protective effects on senile deafness. Methods: Forty C57BL/6J mice were divided into the following four groups (10 mice/group): 3 m group (3 months old group), 12 m group (12 months old sham operation group); In the 12 m OVX group (ovariectomized at 12 months), bilateral oophorectomy was performed at the age of 9 months and normal feeding was performed until the age of 12 months.The 12m OVX+E2 group (estrogen intervention group) underwent bilateral oophorectomy at 9 months of age. After the one-month washout period, mice in the other groups were treated with estrogen at the dose of 100 µg/(kg·d) by subcutaneous injection, lasting 2 months to 12 months old. Mice in the other groups were fed normally.Blood samples were collected from the tail vein at the end of the treatment in 12 m OVX+E2 group. Enzyme-linked immunosorbent assays (ELISAs) was used to determine the serum estrogen levels. Auditory brainstem response (ABR) was used to detect the changes of hearing threshold in each group.Mice were anesthetized with 2% pentobarbital sodium. Bilateral cochlea was extracted after neck amputation and paraffin-embedded sections were performed.Hematoxylin eosin (HE) staining was used to observe the morphological changes in the cochlea spiral ganglion neurons (SGN), and TUNEL staining was used to observe the apoptosis of SGN. The expression levels of Caspase-3, Bax and Bcl-2 mRNA of the apoptotic proteins in cochlear spiral ganglion were measured by real-time fluorescence quantitative PCR (QRT-PCR). Results: Compared with the 3 m group, the hearing threshold of the 12 m group was improved, the loss of spiral ganglion cells was aggravated, and the apoptosis of the cells was increased(P<0.01). After removal of the ovaries, the hearing threshold of the mice in the 12 m OVX group was higher than that in the 12 m control group (P<0.01), and this increased threshold was accompanied by an increased loss of spiral ganglion cells, and increased apoptosis (P<0.01). Meanwhile, the mRNA levels of apoptotic protein Caspase-3 and Bax were increased (P<0.01), while the mRNA level of anti-apoptotic protein Bcl-2 was decreased (P<0.01). After exogenous estrogen was given to the 12 m OVX+E2 group, the hearing threshold was lower than that in 12 m OVX group(P<0.01). At the same time, the apoptosis of helical ganglion cells was reduced, the mRNA levels of Caspase-3 and Bax were decreased (P<0.01), and the Bcl-2 mRNA level was increased (P<0.01). Conclusion: Estrogen inhibited apoptosis of cochlear spiral ganglion cells in aged C57BL/6J mice ,thus achieving a protective effect on presbycusis.


Asunto(s)
Cóclea , Ganglio Espiral de la Cóclea , Animales , Apoptosis , Estrógenos/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas
17.
Int J Mol Med ; 45(1): 81-92, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746364

RESUMEN

The adaptive immune response mediated by T lymphocytes is a well­established factor in the pathogenesis of pulmonary inflammation. Changes in the expression of various connexins (Cxs) or disruption of connexin­mediated cellular communication in T lymphocytes contribute to inflammation or tissue remodeling. The aim of the present study was to investigate the potential therapeutic value of blocking Cxs in a monocrotaline (MCT)­induced pulmonary inflammation rat model. Carbenoxolone (CBX) was used to inhibit connexin­mediated cellular communication. An MCT rat model was established by intraperitoneal (i.p.) injection of a single dose of MCT (60 mg/kg), and CBX treatment (20 µg/kg/day, i.p.) was initiated on the day following MCT treatment for 28 days. Vehicle­treated male Sprague­Dawley rats were used as the negative control. The MCT rat model was evaluated by measuring the pulmonary artery flow acceleration time and right ventricular hypertrophy index (RVHI). Histopathological features of the lung tissues and pulmonary arteriolar remodeling were assessed. The proportions of T lymphocyte subtypes, Cx40/cx43 expression in the T cell subtypes and the cytokine levels in the plasma and the lung tissues were also analyzed. Pharmacological inhibition of Cxs using CBX attenuated MCT­induced right ventricular hypertrophy, pulmonary arteriolar remodeling, lung fibrosis and inflammatory cell infiltration by decreasing the RVHI, pulmonary arterial wall thickening, collagen deposition and pro­inflammatory cytokines production as well as CD3+ and CD4+ T cell accumulation in lung tissues of MCT­treated rats. Furthermore, flow cytometry analysis revealed that CBX may inhibit MCT­induced Cx40 and Cx43 expression in CD4+ and CD8+ T lymphocytes in lung tissues. The present study provides evidence that pharmacological inhibition of Cxs may attenuate MCT­induced pulmonary arteriolar remodeling and pulmonary inflammatory response, at least in part, by decreasing Cx expression. The results highlight the critical role of Cxs in T lymphocytes in the MCT­induced pulmonary inflammatory response and that targeting of Cxs may be a potential therapeutic method for treating pulmonary inflammatory diseases.


Asunto(s)
Carbenoxolona/farmacología , Conexinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Neumonía/etiología , Neumonía/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Remodelación Vascular/efectos de los fármacos , Animales , Biopsia , Conexina 43/metabolismo , Conexinas/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Hemodinámica/efectos de los fármacos , Inmunofenotipificación , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Masculino , Monocrotalina/efectos adversos , Neumonía/diagnóstico , Neumonía/tratamiento farmacológico , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Ratas , Linfocitos T/inmunología
18.
Neural Regen Res ; 15(5): 912-921, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31719257

RESUMEN

Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain. We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons. To this aim, rats with persistent hyperalgesia were randomly divided into four groups. Rats in the control group received no treatment, and the rat sciatic nerve was only exposed in the sham group. Rats in the chronic constriction injury group were established into chronic constriction injury models by ligating sciatic nerve and rats were given bumetanide, an inhibitor of NKCC1, based on chronic constriction injury modeling in the chronic constriction injury + bumetanide group. In the experiment measuring thermal withdrawal latency, bumetanide (15 mg/kg) was intravenously administered. In the patch clamp experiment, bumetanide (10 µg/µL) and acutely isolated dorsal root ganglion neurons (on day 14) were incubated for 1 hour, or bumetanide (5 µg/µL) was intrathecally injected. The Hargreaves test was conducted to detect changes in thermal hyperalgesia in rats. We found that the thermal withdrawal latency of rats was significantly decreased on days 7, 14, and 21 after model establishment. After intravenous injection of bumetanide, the reduction in thermal retraction latency caused by model establishment was significantly inhibited. Immunohistochemistry and western blot assay results revealed that the immune response and protein expression of NKCC1 in dorsal root ganglion neurons of the chronic constriction injury group increased significantly on days 7, 14, and 21 after model establishment. No immune response or protein expression of KCC2 was observed in dorsal root ganglion neurons before and after model establishment. The Cl- (chloride ion) fluorescent probe technique was used to evaluate the change of Cl- concentration in dorsal root ganglion neurons of chronic constriction injury model rats. We found that the relative optical density of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (a Cl- fluorescent probe whose fluorescence intensity decreases as Cl- concentration increases) in the dorsal root ganglion neurons of the chronic constriction injury group was significantly decreased on days 7 and 14 after model establishment. The whole-cell patch clamp technique revealed that the resting potential and action potential frequency of dorsal root ganglion neurons increased, and the threshold and rheobase of action potentials decreased in the chronic constriction injury group on day 14 after model establishment. After bumetanide administration, the above indicators were significantly suppressed. These results confirm that CCI can induce abnormal overexpression of NKCC1, thereby increasing the Cl- concentration in dorsal root ganglion neurons; this then enhances the excitability of dorsal root ganglion neurons and ultimately promotes hyperalgesia and allodynia. In addition, bumetanide can achieve analgesic effects. All experiments were approved by the Institutional Ethics Review Board at the First Affiliated Hospital, College of Medicine, Shihezi University, China on February 22, 2017 (approval No. A2017-169-01).

19.
Front Neurosci ; 13: 1205, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787875

RESUMEN

17ß-estradiol plays a role in pain sensitivity, analgesic drug efficacy, and neuropathic pain prevalence, but the underlying mechanisms remain unclear. Here, we investigated whether voltage-gated chloride channel-3 (ClC-3) impacts the effects of 17ß-estradiol (E2) on spared nerve injury (SNI)-induced neuropathic pain in ovariectomized (OVX) female Sprague Dawley rats that were divided into OVX, OVX + SNI, OVX + SNI + E2, OVX + SNI + E2 + DMSO (vehicle, dimethyl sulfoxide), or OVX + SNI + E2+Cltx (ClC-3-blocker chlorotoxin) groups. Changes in ClC-3 protein expression were monitored by western blot analysis. Behavioral testing used the paw withdrawal threshold to acetone irritation and paw withdrawal thermal latency (PWTL) to thermal stimulation. Immunofluorescence indicated the localization and protein expression levels of ClC-3. OVX + SNI + E2 rats were subcutaneously injected with 17ß-estradiol once daily for 7 days; a sheathed tube was implanted, and chlorotoxin was injected for 4 days. Intrathecal Cltx to OVX and OVX + SNI rats was administered for 4 consecutive days (days 7-10 after SNI) to further determine the contribution of ClC-3 to neuropathic pain. Patch clamp technology in current clamp mode was used to measure the current threshold (rheobase) dorsal root ganglion (DRG) neurons and the minimal current that evoked action potentials (APs) as excitability parameters. The mean number of APs at double-strength rheobase verified neuronal excitability. There was no difference in behaviors and ClC-3 expression after OVX. Compared with OVX + SNI rats, OVX + SNI + E2 rats showed a lower paw withdrawal threshold to the acetone stimulus, but the PWTL was not significantly different, indicating increased sensitivity to cold but not to thermal pain. Co-immunofluorescent data revealed that ClC-3 was mainly distributed in A- and C-type nociceptive neurons, especially in medium/small-sized neurons. 17ß-estradiol administration was associated with increased expression of ClC-3. 17ß-estradiol-induced increase in ClC-3 expression was blocked by co-administration of Cltx. Cltx causes hyperalgesia and decreased expression of ClC-3 in OVX rats. Patch clamp results suggested that 17ß-estradiol attenuated the excitability of neurons induced by SNI by up-regulating the expression of ClC-3 in the DRG of OVX rats. 17ß-estradiol administration significantly improved cold allodynia thresholds in OVX rats with SNI. The mechanism for this decreased sensitivity may be related to the upregulation of ClC-3 expression in the DRG.

20.
Sheng Li Xue Bao ; 71(4): 527-536, 2019 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-31440749

RESUMEN

The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups. The neurobehavioral score was assessed by the Longa score method, the morphological changes of the neurons were observed by the Nissl staining, the cerebral infarction was detected by the TTC staining, and the neural apoptosis in the hippocampal CA1 region was detected by TUNEL staining. The distribution and expression of GRP78 (78 kDa glucose-regulated protein 78) in the hippocampal CA1 region were observed by immunofluorescent staining. The protein expression levels of GRP78, Caspase-12, CHOP and Caspase-3 were detected by Western blot, and the mRNA expression levels of GRP78, Caspase-12, and CHOP were detected by the real-time PCR. The results showed that the neurobehavioral score, cerebral infarct volume, cellular apoptosis index, as well as GRP78, Caspase-12 and CHOP protein and mRNA expression levels in the MCAO group were significantly higher than those of control group. And G1 reversed the above-mentioned changes in the MCAO+G1 group. These results suggest that the activation of GPER can decrease the apoptosis of hippocampal neurons and relieve CIRI, and its mechanism may involve the inhibition of ERS.


Asunto(s)
Isquemia Encefálica , Estrés del Retículo Endoplásmico , Neuronas/citología , Receptores de Estrógenos/fisiología , Receptores Acoplados a Proteínas G/agonistas , Daño por Reperfusión , Animales , Apoptosis , Región CA1 Hipocampal/citología , Caspasa 12/metabolismo , Caspasa 3/metabolismo , Femenino , Proteínas de Choque Térmico/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factor de Transcripción CHOP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...